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Abstract 
 
Auxiliary variables, both univariate and multivariate, must be efficiently used to obtain accurate 
estimates. They are useful ex ante, that is when the sample has to be drawn, but also ex post, as the 
weight calibration method. 
The classical issue on efficient sample design through a stratification based on auxiliary information 
will be reviewed in comparison with sampling units selection methods that make an appropriate use of 
auxiliary variables. We will focus our attention on three approaches: the model−based approach, the 
πps approach and the ranked set sampling method. 
While the πps is a well known sample design method, the model−based approach of sample surveys 
assumes that a superpopulation model is specified. 
Ranked set sampling (further on RSS) has been introduced by McIntyre (1952). Since the publication 
of this seminal work, the literature proposed numerous RSS extensions for both parametric and 
non−parametric estimates. 
In its original formulation, RSS starts with the selection of a simple random sample without reinsertion 
of n population units. Then the mean must be estimated from those units. The n are ranked in 
increasing order with respect to an auxiliary variable x, that is, without the effective calculation of the 
interest variable y. 
Which method is the best depends on the application at hand. To show some evidence, we compare 
the methods on real data on the slaughtering sector, for which the sample strata and the variables 
estimates are calculated, following the suggestions that are contained in Dorfman and Valliant (2000). 
Finally a comparison between ex-ante and ex−post use of the auxiliary information is performed. We 
will draw, for each selection method applied, 2000 samples based on the censuses lists in order to 
build the sample spaces and on the basis of them we will estimate which distribution is the “nearest” 
to the known true value in terms of MSE.  
 
 
1. Introduction 
 
Several National Institutes of Statistics (NIS), as the Italian one (ISTAT), usually 
make large efforts to project surveys that generally are based on an efficient use of 
all the available auxiliary information, either univariate or multivariate, in order to 
obtain more precise and reliable estimates. Such an utilization mainly consists of 
actions performed after the sample selection, as shown in not dashed boxes in the 
scheme of fig. 1. In fact, the most common context for the production of sample 
estimates consists in a standard design, that is generally a stratification of the list 
and a simple random selection of the units within the determined strata. Only after 



the data collection and editing phase, the auxiliary information are used. It is in this 
phase that NIS make the greatest effort in the use, but also in the developing of very 
complex estimators that could lead to efficiency improvements. A lot of sample 
surveys done by ISTAT referring to the primary sector follow the above practice too. 
Among these, a special example is, also for the course of this paper, the red meat 
slaughtering monthly survey; it foresees a stratified sampling, with a stratification by 
kind of slaughter-houses and geographical division, for a total of 5 strata, two of 
which with geographical references. Strata are the following: stratum 1 (always 
totally observed), consisting of private with European Economic Community (EEC) 
stamp slaughter-houses in the geographical division 1 or 2; stratum 2: consisting of 
private with EEC stamp slaughter-houses in the geographical division 3, 4 or 5; 
stratum 3: private with low capacity slaughter-houses (apart from geographical 
division); stratum 4: private in derogation, public with EEC stamp and public in 
derogation (apart from geographical division) slaughter-houses; stratum 5: public 
with low capacity slaughter-houses. Two dimensional criteria that assign to stratum 1 
those enterprises with more than 10.000 sheep and goats or more than 50.000 pigs 
slaughterings act in the stratification too. On the average the sample is of about 460 
units for a population of about 2.200 units. 
After the survey has been performed, the initial direct estimates are corrected 
through the use of calibration estimators (Deville and Särndal, 1992 - an outline will 
be given in the next section). The external consistency constraints are assigned 
referring to the total survey of two years before the current figures, because, at the 
estimates production time, the data of previous year survey are seldom available. 
Calibration acts in practice on each single category (for example calves) and not on 
the species (for example cattle) imposing, for each stratum, the respect of the two 
years before the current survey census total; in theory it would be possible to 
constrain with respect to all the 24 categories object of the survey; in practice this 
never happens because of non responses and the weighting generally is reduced to 
operate on the most important 4 or 5 variables. 
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Figure 1: use of the auxiliary information in sample surveys. 
 
The purpose of this paper is to show how, combining the ex ante use of the auxiliary 
information with that one ex post, further improvements in terms of efficiency of the 
estimates can be gathered. The ex ante use of the auxiliary information to which we 



are referring to, concerns the choice of sampling designs in which the auxiliary 
variables guide the selection of the sample units from the list of interest (cf. the 
dashed box in the scheme in fig. 1). A series of controlled experiments was 
conducted through simulations that will be described in section 2. Such experiments 
were built in order to test the efficiency of some sample selection criteria applied to 
the ISTAT slaughtering monthly survey (Espa et al., 2001). Paragraph 3. is devoted 
to explain the main results of the simulation done and some final remarks. It could be 
asserted that the test carried out responds at the same time to another need: to 
supply proposals for the re-planning of the actual monthly sample of the ISTAT 
slaughtering survey. 
 
 
2. The simulation performed: list and selection criteria adopted 

 
The sampling frame for the experiments done was made up by N = 2.211 units 
(enterprises) for which 12 variables were available. These were the same 4 variables 
(total number of slaughtered cattle, of pigs, of sheep and goats, and of equines), 
observed in all the population every year and in particular used with reference to the 
years 1999, 2000 and 2001. Such a frame was used to: 

i) plan the database necessary to obtain estimates with the use of ex post 
auxiliary information (auxiliary variables are those totally observed in 1999 
and 2000); 

ii) verify (through the calculation of RMSE) the accuracy of the estimates 
obtained for 2001 (object year of the survey) by comparisons with known 
census figures of 2001. This is a way justified by the periodicity with which 
slaughtering figures are available in reality: beside census survey repeated 
every year, ISTAT carries out a monthly sample survey. Therefore our 
experiments ties to simulate just this monthly survey designed, as already 
said, using different sampling selection criteria; the simulated analysis then 
offers the possibility to carry out significant comparisons with the census 
data (through estimates empirical sampling distributions) to suggest a 
more efficient design for the monthly survey. 

For every simulation, 2.000 samples with size n = 200 were selected. Furthermore 
for each of the scenarios about which any simulation is performed, weight vector was 
calibrated, where possible, on the same variables as observed in 1999 and 2000. 
This in order to verify if the temporal delay of the auxiliary information gives rise to 
possible efficiency decreases of the estimates as well. The variables estimated 
through sampling means at 2001 are, in every single replication of the experiment, 
the totals of the four variables previously considered (cf. tab. 2). 
For each of the selection criteria used, the estimates have been produced through 
the classical expansion estimator known in specialized literature as the 
Horvitz−Thompson estimator and through the calibration estimator of Deville and 
Särndal (1992). It is, in synthesis, an estimator that acts a calibration of the weights 
resulting from the original sample design that respect the external consistency 
conditions. In other words it is imposed that sampling distributions weighted for the 
auxiliary variables be in conformity with the same variables distributions known a 
priori through census data. An exception is the balanced sampling (or model−based 
approach to the inference in sampling survey, whose bases can be also found in 
Royall (1970)) that is constrained by definition to select a sample s satisfying the 



condition ∑ ∑=s U kkk xxπ . 
Some needed clarifications about each of the selection criteria used are, in the same 
order of the first column of tab. 2, the following (more extended for those criteria less 
usually adopted in practice): 
 
Simple random sampling (SRS) 
For this sampling design, nothing has to be specified except the fact that the direct 
estimate doesn’t use auxiliary information by definition and therefore it’s not 
necessary to distinguish the two reference years. 
 
Stratified sampling (ST) 
On the contrary, in the case of stratified sampling, the auxiliary information acts, as 
already said, ex ante the samples selection in the setting up of the strata. Therefore 
in tab. 1 there are the results concerning direct estimates with basis 1999 and 2000 
just to distinguish the reference year of the auxiliary variables on the basis of which 
strata have been set up. The strata themselves, in number of five for each 
experiment, have been set up in a way, so to say, based on the following 
considerations. Taking into account for each of the four variables object of estimate, 
the four census thresholds (Hidiroglou, 1986), we dispose of two strata for each 
variable (one to be totally observed and the other one to be sampled). In total, 
therefore, 1624 =  strata. By integrating strata similar in internal composition (namely 
integrating by addition of the strata codes), we obtain the five final strata: 
• stratum 1, made up by firms always totally observed for all four variables; 
• stratum 2, made up by firms totally observed three times (i.e. in relation to three 

out of the four variables); 
• stratum 3, with units totally observed two times; 
• stratum 4, with units totally observed only once; 
• stratum 5, made up by units always sampled. 
To conclude, it is specified that the allocation of the 200 units to the five strata has 
been made in accordance with the multivariate allocation model of Bethel (1989), 
taking into account that we have just simulated a multivariate survey. 
 
Ranked Set Sampling (RSS) 
The third selection criterion adopted is linked to the logic of Ranked Set Sampling, or 
RSS. The introduction of such sampling criterion is due to McIntyre (1952), who 
designed it with the aim of estimating the mean of agricultural variables and studied 
the advantages in comparison to the use of simple random sampling. Starting with 
this fundamental contribution, the specialized literature obtained then other 
contributions proposing numerous variants of the RSS both for parametric and non-
parametric estimates (cf., among others, Li et al., 1999, Bai and Chen, 2003 and 
Rosén, 1997) and interesting applications concerning sampling problems in many 
fields, taking into account that the most common utilizations concern agriculture and 
ecological studies (Patil et al., 1994a). 
In its original formulation, here utilized except for some modifications that will be 
mentioned later on, the RSS procedure calls for the simple random selection, without 
reinsertion, of n units of the reference population. The n sample units are ranked in a 
not-decreasing order, by mean of a criterion that doesn’t call for an effective 
measure, in each unit, of the variable object of interest y. We could produce the 
ranking on the basis of the values assumed by the units in relation to an auxiliary x 



known at population U level. In this case it is evident that the “quality” of the auxiliary 
has to be linked not to the linear correlation between x and y but mainly to the 
correlation between the x and the y ranks (i.e. a weaker link). Later on we will 
suppose that the ranking has been made in respect to the auxiliary variable x, known 
at population U level. 
Continuing with the RSS, with reference to the first chosen sample, we proceed to 
the quantification, that is to the measure of the variable object of interest y, of only 
the first unit of the ranked group. Then we draw a second sample in the same way of 
the first one, and the sample observation is applied only on the second unit of the 
ranking. This procedure is repeated up to the completion of the RSS cycle requiring 
n replications. A whole cycle can be repeated also m times. 
The RSS increases the precision of the estimate of an average in respect of simple 
random sampling of same size n. This remains valid also if there are errors in the 
ranking; however the relative precision decreases with the increase of errors in the 
ranking. At the limit RSS and SRS are equivalent if the ranking is made up in a 
completely random manner. Therefore the trade-off to be carefully evaluated in the 
applications is that one between the precision increase and computational cost 
increase for ranking. Anyway an RSS efficiency increase (in comparison with the 
simple random sampling) cannot be obtained increasing the cycles number m, but 
increasing the sample size n which, on the other side, in practice has to be very 
reduced (Al−Saleh and Al−Omari, 2002). 
An RSS selection requires therefore a basis of 2n  units (n samples, each of n units), 
but it imposes to make the sample observation only on the n units fixed according to 
the principles specified above. For RSS comprehension, can be useful to refer to 
table 1 below: 
 

 ( )11y  ( )21y  … ( )iy 1  … ( )ny 1  
 ( )12y  ( )22y  … ( )iy 2  … ( )ny 2  
 M  M   M   M  
 ( )1iy  ( )2iy  … ( )iiy  … ( )niy  
 M  M   M   M  
 ( )1ny  ( )2ny  … ( )iny  … ( )nny  

Tab. 1. Database of 2n  units: n ranked sets, each composed by n units. The observations 
corresponding to the chosen units are in evidence. 
 
The final sample ( ) ( ) ( ){ }nnii yyy ,...,,...,11 , known as rank ordered sample is that one 
utilized for inference tasks.  
To be noted that, also if in the various phases of the cycle the selection is without 
reinsertion, ex post the sample can result with reinsertion. In fact it can happen that a 
certain unit (i) coming from the i-th phase of the RSS cycle, be the (k)−th of the 
phase k with k≠i. 
A part the technical aspects that here are not relevant, the key parameter to 
implement a RSS selection is the variable utilized for ranking. The way utilized to 
treat a multivariate problem, with a selection criterion that is, by nature, based on 
only one variable, was to utilize as ranking variable the vector of the first order 



inclusion probabilities, generated for implementing the selection with probabilities 
proportional to the dimension of the units (πPS). 
This solution could possibly refer to that of Patil et al. (1994b), who propose to base 
the samples selection on the ranking in relation of only an auxiliary variable, 
individualized as the most relevant, with the other variables called to perform as 
concomitant. This way to proceed is applicable with a certain reason if the primary 
variable is strongly and positively correlated with the concomitant (the rankings 
based on the single variables should be enough similar). It is of dubious applicability 
in the case such correlation is not important or quite negative. We will came back on 
this point in section 3., with particular reference to the simulation performed. To 
conclude we point out that four different algorithms of samples selection representing 
effectively extensions to the case of two or more variables, are described and treated 
by Ridout (2003). 
 
Probability proportional to size (πPS) 
Referring to this last criterion, we had initially four vectors of first order inclusion 

probabilities, one for each auxiliary at time t: 
∑

=
U ik

ikt
ik x

nx

,

,
,π , k =1,2,…, N, i =1,4 and 

t=1999 and 2000. In order to consider all the four auxiliaries in the sample selection 
process, we have then decided to change from the four vectors of first order 
inclusion probabilities to the vector of the averages of such probabilities. This choice 
assures, among others, the minimization of the maximum of the four variances of the 
auxiliary variables (the result is easily demonstrated by observing that the probability 
medium vector makes equal the four variances in question). To conclude, we only 
specify that all these units k for which 1>kπ , caused by the presence of values kx  
excessively high, are surely included in the sample. Therefore the solution here 
adopted to build a multivariate survey (that requires the measure of more than a 
variable in each sample) is not a true multivariate solution. 
 
Balanced samplings 
As already said, the model−based approach of sample surveys assumes that a 
model ξ  is specified. Model ξ  is called the superpopulation model and represents 
the distribution of the random vector Y ( )Nk YYY ,...,,...,1=  where kY  is a random 
variable of the k vector entry. The real population y ( )Nk yyy ,...,,...,1=  is a realization 
of Y. 

Without loosing generality, let the total ∑
=

=
N

k
kyt

1
 to be estimated. Then sample s is 

to be drawn, whose data are { }skyk ∈: . A t estimator depends on those data, in 
such a way that { }( ).:ˆˆ skytt k ∈=  
If ξ  is fixed and for a given s, the distribution of ( )tt −ˆ  can be determined and 

( )tMSE ˆ
ξ  can be estimated. A prediction interval for t is calculated, to be not 

confused with a confidence interval, because the approach is different. 
The model−based inference assumes that a long series of vector Y realizations 

are available, for fixed drawn sample s. The inference relies on the specified model 
and is constrained by s, the sample composed of the effective realization of the 
variable. Sample design p(s) and inclusion probability do not play any role in the 



inference. This approach has some methodological advantages, see among others 
Royall, 1970, Royall, 1992, Royall and Herson, 1973a e 1973b, where the 
model−based approach is introduced and then formalized within a robustness 
approach. Conversely, some authors claim that finite populations cannot be replied, 
since there is only one finite population so that the so called design−based (or 
randomization inference) is more appropriate, see (Särndal et al., 1992, pp. 
533−535). The model−based approach consists in finding an estimator in such a way 
that, for given s, the mean square error determined by the model 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −= sttEtMSE

2ˆˆ
ξξ  under the constraint that the estimator must be unbiased, 

that is: ( )[ ] 0ˆ =− sttEξ , is minimum. In practice, it may be the case that the sample is 

drawn in such a way that the minimum of the objective function ( )tMSE ˆ
ξ is reached 

by the selected units, but in this case the sample is not random anymore (Royall, 
1970). Detractors of the Model−based approach claim that such a sample can be 
risky (Särndal et al., 1992, p. 517). 
If the model has not been well specified, common estimators can be biased. Royall 
and Eberhardt (1975) studied the problem in the case of the ratio estimator 
proposing estimators more robust to the errors of model specification. As far the 
sample selection is concerned, Royall and Eberhardt (1975) suggest to balance the 
sample with respect to the auxiliary variable x. In other words, they suggest to 
choose a sample such that sU xx = . The sample balance prevents to control and to 
limit the effects of the bias that occurs if model is false. 
To conclude, with reference to the last two selection criteria used (balanced 
sampling and πPS balanced sampling), it is only necessary to specify that the 
balance constraint is valid for all the four variables, subject to estimation. The 
difference between the two selection criteria simply relates to the respect of the 
balance constraint, that in the second case is imposed ex post to selected samples 
with probabilities proportional to the dimension. 
 
 
3. Conclusions 

 
In table 2 the main results of the simulation performed and in figure 2 the simulated 
sampling distributions are shown. The principal indications about the auxiliary 
information use coming out from the figures can be synthetized in the following 
considerations. Above all and with equal conditions, it is better to impose the balance 
constraints in design phase, than in ex post. This result, in reality obvious thinking by 
similarity to the advantages of the stratification in respect of post-stratification, is 
evident by comparing the RMSE of the simple random sampling with calibration and 
that one relating to the balanced sampling.  
Secondly, the best performances among the adopted criteria are clearly associated 
to the balanced πPS selections and πPS with calibration. The two situations differ by 
almost nothing and in reality are not improvable because very near of a minimum 
point. From an applicative point of view our opinion is that only a joint use of complex 
estimators together with efficient sampling designs may reduce considerably the 
variability of the estimates. The drawback is that balanced πPS and πPS with 
calibration selection criteria are on the one hand more efficient but on the other hand 
less robust of the others when outliers are present (cf. figure 2. In which the bimodal 



distributions corresponding to the criteria at issue can be observed). 
A not expected result concerns the bad performance of RSS method. Such a result 
can be ascribed to the forced univariate use of the auxiliary information for the 
ranking setting up when linear independence is present. 

 
 

Tab. 2: Synthesis prospect of the main results of the simulation performed. 
 

RMSE (as % of the estimate) 
Selection 
criterion Estimator 

Aux. 
var. 
year CATTLE

SHEEP 
AND 

GOATS
PIGS EQUINES

Direct ----- 40,00% 51,25% 51,65% 57,70%
2000 14,12% 25,31% 27,43% 26,45%SRS  Calibration 
1999 20,31% 31,66% 26,73% 35,12%
2000 28,04% 32,76% 34,43% 33,84%Direct 
1999 26,47% 32,17% 33,92% 30,36%
2000 4,71% 9,04% 13,62% 9,77%

Stratified 
Calibration 

1999 12,95% 12,43% 14,53% 12,87%
2000 39,33% 47,91% 47,33% 51,23%Direct 
1999 38,82% 47,82% 46,12% 52,43%
2000 13,52% 21,80% 22,36% 25,68%

Ranked 
Calibration 

1999 18,18% 31,77% 22,80% 35,18%
2000 6,17% 6,38% 15,61% 3,74%Direct 
1999 7,28% 10,18% 17,20% 6,79%
2000 4,52% 5,04% 14,87% 2,57%πPS  

Calibration 
1999 6,04% 9,28% 16,67% 6,48%
2000 6,24% 13,48% 17,26% 15,05%Balanced Direct 
1999 23,57% 20,05% 17,46% 19,43%
2000 5,55% 5,08% 14,60% 2,50%

Bal/πPS Direct 
1999 6,37% 9,45% 16,72% 6,96%

 
 
Figure 2: simulated sampling distributions according to the different sampling designs, where  
• tc1 = total number cattle slaughterings in 2001; 
• tc2 = total number sheep and goats slaughterings in 2001; 
• tc3 = total number pigs slaughterings in 2001; 
• tc4 = total number equines slaughterings in 2001: 
 
SRS, direct estimates 
 
 
 
 
 
 
SRS, calibration, based on auxiliary variables of 2000 
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SRS, calibration, based on auxiliary variables of 1999 
 
 
 
 
 
 
 
Stratified, direct estimates, based on auxiliary variables of 2000 
 
 
 
 
 
 
Stratified, direct estimates, based on auxiliary variables of 1999 
 
 
 
 
 
 
Stratified, calibration, based on auxiliary variables of 2000 
 
 
 
 
 
 
Stratified, calibration, based on auxiliary variables of 1999 
 
 
 
 
 
 
Ranked set, direct estimates, based on auxiliary variables of 2000 
 
 
 
 
 
 
 
Ranked set, direct estimates, based on auxiliary variables of 1999 
 
 
 
 
 
 
Ranked set, calibration, based on auxiliary variables of 2000 
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Ranked set, calibration, based on auxiliary variables of 1999 
 
 
 
 
 
 
πps, direct estimates, based on auxiliary variables of 2000 
 
 
 
 
 
 
πps, direct estimates, based on auxiliary variables of 1999 
 
 
 
 
 
 
πps, calibration, based on auxiliary variables of 2000 
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